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A discrete Gd3+ and radical complex was prepared and
characterized to be [Gd(hfac)3(HNN)3] by means of X-ray
crystallographic analysis, where Hhfac stands for 1,1,1,5,5,5-
hexafluoropentane-2,4-dione and HNN for 4,4,5,5-tetramethyl-
imidazolin-1-oxyl 3-oxide. A magnetic study revealed the
presence of ferromagnetic exchange coupling with 2J/kB =
3.86(6) K, ascribable to the Gd­HNN interaction.

Molecule-based magnetic materials have an advantage in
designing a spatial arrangement of a variety of magnetic orbitals
and preparing low-dimensional frameworks by means of facile
self-assembly techniques.1,2 4f-Ion-based heterospin compounds
have been intensively studied for development of bulk magnets3

and single-molecule magnets,4,5 where strong magnetic aniso-
tropy and large spin are available from lanthanide (Ln) ions.6

We have developed several single-molecule magnets and estab-
lished a standard method5,7­9 to evaluate the exchange coupling
by means of high-frequency electron paramagnetic resonance.10

In the present work, we apply a relatively small radical 4,4,5,5-
tetramethylimidazolin-1-oxyl 3-oxide11 (HNN) to construct novel
4f­³ heterospin systems. Fortunately, in the Gd3+ case, the
magnetic exchange coupling can be examined from the conven-
tional »(T) measurements, because of the spin-only character.

We newly synthesized [GdIII(hfac)3(HNN)3] (Gd-HNN),
where Hhfac stands for 1,1,1,5,5,5-hexafluoropentane-2,4-dione
(Scheme 1). After a heptane solution (45mL) of [Gd(hfac)3-
(H2O)2] (81mg, 0.10mmol) was heated and concentrated to a
volume of ca. 15mL, a dichloromethane solution (4mL) of
HNN (94mg, 0.60mmol) was added to the above solution while
hot. The mixture was allowed to stand at room temperature and
then in a refrigerator for 3 days, to give Gd-HNN (83mg,
0.066mmol) as a polycrystalline product in 66% yield. The
product is stable up to the melting point (85­87 °C). To our
knowledge, Gd-HNN is the first Ln complex with the Ln/
radical ratio of 1/3, as characterized by means of X-ray
crystallographic analysis12 together with spectroscopic and
elemental analyses.13

The Gd ion is nine-coordinate (Figure 1), where the 4f and
2p spin centers are directly bonded. The geometry of HNN is
quite normal in comparison with some HNN-ligated transition-
metal ion complexes.14 Awhole molecule is crystallographically
independent, but the geometries around the HNN coordinations
are similar to each other. The Gd­OHNN bond lengths are
2.457(2), 2.412(3), and 2.421(2)¡ for Gd1­O2, Gd1­O4, and
Gd1­O6, respectively. They are longer than any other related Gd
complexes with aromatic NN ligands (typically 2.32­2.36¡),15

probably owing to the steric congestion of the Gd coordination
sphere in Gd-HNN. The Gd­O­N bond angles are 134.11(17),
135.68(15), and 133.54(15)° for Gd1­O2­N2, Gd1­O4­N4, and
Gd1­O6­N6, respectively. The out-of-plane Gd position from
the radical conjugation plane was evaluated by the Gd­O­N­C¡

torsion angle. The Gd1­O2­N2­C1, Gd1­O4­N4­C8, and
Gd1­O6­N6­C15 angles are 37.5(4), ¹44.9(4), and 45.5(4)°,
respectively.

Magnetic susceptibility of a randomly oriented polycrystal-
line specimen of Gd-HNN was measured at 500Oe, as a
function of temperature (Figure 2). The »mT value at 300K was
9.3 cm3Kmol¹1, which is very close to the high-temperature
limit of the spin-only value (9.0 cm3Kmol¹1). The »mT value
was increased on cooling, indicating the presence of ferromag-
netic coupling. The maximum around 4.5K was considerably
smaller than the ferromagnetic limit with Stotal = 5 (15
cm3Kmol¹1). This finding suggests the presence of intermo-
lecular antiferromagnetic coupling.16

The inset shows the magnetization curve of polycrystalline
Gd-HNN measured at 4.5K. The magnetization reached 9.16
NA®B at 7 T, and the saturation magnetization is estimated to be
10 NA®B, being consistent with ferromagnetically correlated
S = 7/2 and three S = 1/2 species with g = 2. The experimental
data are located above the calculated curve of a noninteracting
model (the broken line), but considerably smaller than that of the
ferromagnetic Stotal = 5 limit (the solid line). The presence of
intermolecular antiferromagnetic coupling is confirmed.

Scheme 1. Synthetic route to Gd-HNN.

Figure 1. X-ray crystal structure of Gd-HNN with thermal ellipsoids at
the 50% level. Hydrogen atoms are omitted for clarity. Selected atomic
numbering is shown. Green and black atoms stand for F and C,
respectively.
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As the crystal structure analysis suggests, the molecule is
assumed to have approximately threefold symmetry in the
magnetic analysis. The Heisenberg spin Hamiltonian is drawn as
H = ¹2JS1¢(S2 + S3 + S4), where S1 implies the Gd3+ spin and
S2 ¹ S4 the HNN spins. The following van Vleck equation is
obtained by means of Kambe’s vector coupling method17 (eq 1).
A Weiss mean field parameter ª is introduced. The parameters
were optimized, giving 2J/kB = +3.86(6)K, ª = ¹1.052(9)K,
and gavg = 2.0411(14). The calculation well reproduced the
experimental data (the solid line in Figure 2). We conclude that
Gd-HNN possesses the ground Stotal = 5 state.

»m ¼ 2NA®B
2gavg

2

kBðT � ªÞ
A

B
ð1Þ

A ¼ 55þ 60 expð�7J=kBT Þ þ 30 expð�10J=kBT Þ
þ 28 expð�15J=kBT Þ þ 14 expð�18J=kBT Þ
þ 5 expð�24J=kBT Þ

B ¼ 11þ 18 expð�7J=kBT Þ þ 9 expð�10J=kBT Þ
þ 14 expð�15J=kBT Þ þ 7 expð�18J=kBT Þ
þ 5 expð�24J=kBT Þ

There have been several reports on ferromagnetic coupling
between Gd3+ and organic radicals.15,18 Gatteschi et al. have
analyzed the Gd3+­PhNN interaction based on the balance of
ferro- and antiferromagnetic contributions from each 4f­³*
interaction (PhNN stands for 2-phenyl-NN).18 Similarly, in Gd-
HNN, when the ³* orbital in HNN is antiferromagnetically
correlated with 4fz3 and 4fxyz for instance, the other combinations
can be all orthogonal to the ³* orbital, possibly leading to an
overall ferromagnetic coupling. Ferromagnetic Gd3+­Cu2+

systems are also well known, and a plausible mechanism
involving 5d­3d interaction and not 4f­3d overlap has been
proposed.19 An overlap of 5d­³* might be taken into consid-
eration for Gd-HNN, if it seems less likely that three nitroxide
³* orbitals are all coincidently orthogonal to 4f orbitals on Gd3+

with such large geometric torsion.
The nitronyl nitroxide group can bridge metal ions giving

1/1 metal­radical alternating chains, which has been applied to
the first 4f­³ single-chain magnets.20 On the other hand, bulk
magnetic solids require higher networking, and accordingly

constructing a triply or more multiply radical-coordination
seems to be a promising way.21 Organic radicals possess
sterically bulky groups for stabilization, which disturb such
multicoordination. There have been several examples of 1/1 and
1/2 Ln­radical compounds.15,18,22 The present study success-
fully showed a unique 1/3 ratio in Gd-HNN, thanks to the small
size of HNN.
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